Constructing and Understanding Chosen Ciphertext Security via Puncturable Key Encapsulation Mechanisms
نویسندگان
چکیده
In this paper, we introduce and study a new cryptographic primitive that we call puncturable key encapsulation mechanism (PKEM), which is a special class of KEMs that satisfy some functional and security requirements that, combined together, imply chosen ciphertext security (CCA security). The purpose of introducing this primitive is to capture certain common patterns in the security proofs of the several existing CCA secure public key encryption (PKE) schemes and KEMs based on general cryptographic primitives which (explicitly or implicitly) use the ideas and techniques of the Dolev-Dwork-Naor (DDN) construction (STOC’91), and “break down” the proofs into smaller steps, so that each small step is easier to work with/verify/understand than directly tackling CCA security. To see the usefulness of PKEM, we show (1) how several existing constructions of CCA secure PKE/KEM constructed based on general cryptographic primitives can be captured as a PKEM, which enables us to understand these constructions via a unified framework, (2) its connection to detectable CCA security (Hohenberger et al. EUROCRYPT’12), and (3) a new security proof for a KEM-analogue of the DDN construction from a set of assumptions: sender non-committing encryption (SNCE) and non-interactive witness indistinguishable proofs. Then, as our main technical result, we show how to construct a PKEM satisfying our requirements (and thus a CCA secure KEM) from a new set of general cryptographic primitives: SNCE and symmetric key encryption secure for key-dependent messages (KDM secure SKE). Our construction realizes the “decrypt-then-re-encrypt”-style validity check of a ciphertext which is powerful but in general has a problem of the circularity between a plaintext and a randomness. We show how SNCE and KDM secure SKE can be used together to overcome the circularity. We believe that the connection among three seemingly unrelated notions of encryption primitives, i.e. CCA security, the sender non-committing property, and KDM security, to be of theoretical interest.
منابع مشابه
Simulation-Based Selective Opening CCA Security for PKE from Key Encapsulation Mechanisms
We study simulation-based, selective opening security against chosen-ciphertext attacks (SIM-SO-CCA security) for public key encryption (PKE). In a selective opening, chosen-ciphertext attack (SO-CCA), an adversary has access to a decryption oracle, sees a vector of ciphertexts, adaptively chooses to open some of them, and obtains the corresponding plaintexts and random coins used in the creati...
متن کاملOn the Impossibility of Constructing Efficient Key Encapsulation and Programmable Hash Functions in Prime Order Groups
In this paper, we discuss the (im)possibility of constructing chosen ciphertext secure (CCA secure) key encapsulation mechanisms (KEMs) with low ciphertext overhead. More specifically, we rule out the existence of algebraic black-box reductions from the (bounded) CCA security of a natural class of KEMs to any non-interactive problem. The class of KEMs captures the structure of the currently mos...
متن کاملSecure Hybrid Encryption from Weakened Key Encapsulation
We put forward a new paradigm for building hybrid encryption schemes from constrained chosen-ciphertext secure (CCCA) key-encapsulation mechanisms (KEMs) plus authenticated symmetric encryption. Constrained chosen-ciphertext security is a new security notion for KEMs that we propose. CCCA has less demanding security requirements than standard chosen-ciphertext (CCA) security (since it requires ...
متن کاملKey Encapsulation Mechanisms from Extractable Hash Proof Systems, Revisited
In CRYPTO 2010, Wee proposed the notion of “extractable hash proof systems” (XHPS), and its richer version, “all-but-one XHPS” (ABO-XHPS), and showed that chosen ciphertext secure (CCA secure) key encapsulation mechanisms (KEM) can be constructed from them. This elegantly explains several recently proposed practical KEMs constructed based on the “all-but-one” simulation paradigm in a unified fr...
متن کاملRelations between Constrained and Bounded Chosen Ciphertext Security for Key Encapsulation Mechanisms
In CRYPTO 2007, Hofheinz and Kiltz formalized a security notion for key encapsulation mechanisms (KEMs), called constrained chosen ciphertext (CCCA) security, which is strictly weaker than ordinary chosen ciphertext (CCA) security, and showed a new composition paradigm for CCA secure hybrid encryption. Thus, CCCA security of a KEM turned out to be quite useful. However, since the notion is rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015